Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 759: 143467, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33199011

RESUMEN

Peatlands are wetland ecosystems with great significance as natural habitats and as major global carbon stores. They have been subject to widespread exploitation and degradation with resulting losses in characteristic biota and ecosystem functions such as climate regulation. More recently, large-scale programmes have been established to restore peatland ecosystems and the various services they provide to society. Despite significant progress in peatland science and restoration practice, we lack a process-based understanding of how soil microbiota influence peatland functioning and mediate the resilience and recovery of ecosystem services, to perturbations associated with land use and climate change. We argue that there is a need to: in the short-term, characterise peatland microbial communities across a range of spatial and temporal scales and develop an improved understanding of the links between peatland habitat, ecological functions and microbial processes; in the medium term, define what a successfully restored 'target' peatland microbiome looks like for key carbon cycle related ecosystem services and develop microbial-based monitoring tools for assessing restoration needs; and in the longer term, to use this knowledge to influence restoration practices and assess progress on the trajectory towards 'intact' peatland status. Rapid advances in genetic characterisation of the structure and functions of microbial communities offer the potential for transformative progress in these areas, but the scale and speed of methodological and conceptual advances in studying ecosystem functions is a challenge for peatland scientists. Advances in this area require multidisciplinary collaborations between peatland scientists, data scientists and microbiologists and ultimately, collaboration with the modelling community. Developing a process-based understanding of the resilience and recovery of peatlands to perturbations, such as climate extremes, fires, and drainage, will be key to meeting climate targets and delivering ecosystem services cost effectively.


Asunto(s)
Ecosistema , Incendios , Carbono , Ciclo del Carbono , Suelo , Humedales
2.
Sci Total Environ ; 665: 785-796, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30790751

RESUMEN

Peatlands provide a range of ecosystem services but are sensitive to changes in climate and land-use, and many peatlands globally are degraded. We analyse a large-scale, unique and diverse dataset, collected over 15 years, as part of major landscape scale blanket peat restoration projects in the south Pennines, UK. Trajectories of ecosystem change after restoration were assessed by measuring key ecosystem responses including: vegetation cover and indicator species; water table, runoff, and water quality. The reactions of these metrics vary in their behaviour, both in the timing of first response and the rate of change towards a new stable state. Re-establishment of vegetation is a key driver in rapidly reducing particulate carbon loss and attenuating stormflow, while over time biodiversity is improved by the return of native species, and water tables gradually rise. The phasing of these ecosystem service responses indicates that there are different characteristic timescales for the improvement of peatland functions, driven by both surface and subsurface processes. The rapid establishment of vegetation cover over two years, and its importance in improving a broad range of functions, signify it as a key milestone for reporting project success within typical funding timeframes. This study supports the adoption of Lime-Fertiliser-Seed-Mulch restoration on eroding blanket peatlands globally. The trajectories developed are important to help guide practitioners of ecological restoration. Better understanding of the dynamics underpinning the slower response times of subsurface hydrological and biogeochemical function is identified as a key knowledge gap. An understanding of the limits of ecosystems recovery is important when target setting for restoration projects, especially where attaining pristine conditions is unachievable.


Asunto(s)
Conservación de los Recursos Naturales , Humedales , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...